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ABSTRACT 

We give further regularity results with respect to (t, s) for the evolution 
operator G(t, s) of abstract parabolic initial value problems in general Banach 
space. Such results are then used to establish a representation formula for the 
solutions of parabolic initial-boundary value problems with nonvanishing 
data at the boundary. 

1. Introduction 

The study of  the evolution operator for abstract parabolic equations in 

general Banach space Xbegan in the 1960's with the papers of  Sobolevskii and 

Tanabe ([ 15], [16]), who studied initial value problems of  the kind 

(1.1) u'( t)  = A ( t ) u ( t )  + f ( t ) ,  s < t  <= T; u(s)  = Uo 

under the assumptions that the linear operators A (t) have the same domain D 
and generate analytic semigroups in X, and t --* A (t) is H61der continuous with 

values in L ( D ,  X).  Further developments of  the theory led one to consider the 

case of non-constant domains D(A( t ) )  (see e.g. [9], [20], [1], [5] and the 

references quoted there). All these papers are devoted to existence and 

estimates, in several norms, of  t ~ G(t,  s), and to the variation of  constants 

formula, which gives (under suitable assumptions on uo and f )  the solution of  
problem (1. l): 
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~s t (1.2) u(t) = G(t, S)Uo + G(t, a)f(a)da, s < t < T. 

Not much seems to be known about further regularity properties of G(t, s) 
(especially w.r.t, s), which is the subject of  the present paper. Komatsu showed 
in [ 10] that, ifA (.)A (0) - 1 is analytically extendible to a complex sector around 
the positive real semi-axis, then (t, s) ~ G(t, s) is analytic for t > s. Gevrey 
regularity was studied by Tanabe in his book [17]. 

Here we consider the case of constant (but not necessarily dense) domain D, 
and we assume that t ~ A ( t )  belongs to Cl+~([0, T]; L(D,  X)). Among the 
results, we quote the following: for every x E X,  G(t, s)x is C 2 + ~ with respect to 

t and C ~+~-' with respect to s in the set { ( t , s ) ~ R  2, 0 < s  < t  < T} for each 
e > 0; moreover Gs(t, s)x and Gu(t, s)x have singularities like (t - s ) -  I and 
(t - s) -2, respectively, as t approaches s. Estimates for Gs(t, s)x, Get(t, s)x and 
Gu(t, s)x are given also for x belonging to some interpolation space between D 
and X; they turn out to be optimal, compared with the corresponding ones in 

the autonomous case A ( t ) = A .  For deriving such estimates, we use the 
construction of the evolution operator of [ 14]. 

As an application, in Section 3 we consider a parabolic non-homogeneous 
initial-boundary value problem (here and in the following, repeated indices 

mean summation): 

u,(t, x) = azj(t, x)D~)u(t, x) + b~(t, x)D,u(t,  x) + c(t, x)u(t,  x), 

0 < t  < T ,  xEf~ ,  

(1.3) 
u(O,x)= Uo(X), x ~ f ~ ,  

Y $ u ( t , x ) = g ( t , x ) ,  O<t_-<T,  x~S[~,  

where ~ is a bounded open set in R" with smooth boundary 0~, and either 

( ~ f ) ( x )  = f (x)  (Dirichlet boundary condition) or ( ~ f ) ( x ) =  fl~(x)DJ(x) + 
y(x) f (x)  (mixed non-tangential boundary condition). Under  suitable assump- 
tions on the data, we show that, in the case of the Dirichlet b.c., the solution of 
(1.3) admits the representation 

:o' (1.4) u(t, .) = G(t, O)uo + G~(t, s)D(s)g(s, .)ds, 0 <-_ t < T. 

Here G(t, s) is the evolution operator in the space X = LP(D) generated 
by the family A(t) :  D -~ X,  A(t) f = a~j(t, . ) D j  + b~(t, . ) D J  + c(t, . ) f ,  D = 
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W2,p(f~) N W].P(fl) and D(s) is the so-called Dirichlet mapping at the time s, 
i.e. D(s)~t is the solution v of 

(1.5) a~j(s , . )Dw+b,(s , . )D~v+c(s , . )v=O inf l ,  v = ~ '  i n0~ .  

A similar representation formula holds in the case of the mixed boundary 

condition: we get 

£ (1.6) u(t, .  ) = G(t, O)uo + G~(t, s)M(s)g(s, .)ds,  t > 0 

where, now, G(t, s) is the evolution operator in the space X - L~(~) generated 
by the family A(t) : E ~ X,  A(t) f = ao(t,. )Duf + b~(t,. )D~f + c(t,. ) f ,  

E = { f e  W2,P(~); fl~(x)DJ(x) + ?(x)f(x)  = 0 on Of~} 

and M(s) is the "mixed mapping" at the time s, i.e. M ( s ) v  is the solution z of 

a~j(s,. )D~jz + b~(s,. )Diz + c(s,. )z = 0 in fL 

(1.7) 
fl~(.)D~z + ?(.)z = ¥ in 0ft. 

Formulas (1.4) and (1.6) are quite similar to the corresponding ones in the case 
where A does not depend on time, introduced by Balakrishnan in [7]; it is of 
interest in boundary control theory (see, e.g., the papers [11], [19], and the 
book [7], concerning the autonomous case). Other generalizations of the 
Balakrishnan formula to the time-dependent case may be found in [6], [2]. 

2. Further regularity results 

Let X and D be Banach spaces, endowed with the norms [[ [[, ]] []o 
respectively, and let 0 < a  < 1, T >  0, A(t) : [0, T ] ~ L ( D ,  X) be such that 

(2.1) t -~A (t) E C' +~([0, T]; L(D,  X)), 

(2.2) for every t ~ [0, T], A(t) generates an analytic semigroup e *A~') in X, 

there is c _->- 1 such that c - '  ]l x lid < [] x ]] + ]] A(t)x  I[ < c I] x I[o 
(2.3) for e a c h x ~ D ,  0 < t _-< T. 

Then (see [14]) there is a family of evolution operators G(t, s )E  L (X) such that 

(2.4) G(t, s) = e tt-suts) + W(t, s), 0 <= s < t <= T 

where t ~ W(t, s)x is the unique solution w of 

(2.5) w'(t) =,4 (s)w(t) + [A (t) - A  (s)](w(t) + e t'-s~s)x), s < t ~= T; w(s) = O. 
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We shall use the representation formula (2.4) for studying further regularity 
properties of G(t, s). With this aim we shall consider the family of real 
interpolation spaces 

(2.6) Xo = (X, D)0.®, 0 < 0 < 1 

(see [18, ch. 1.14] for equivalent definitions and norms). 
We also introduce a class of Banach spaces: if B is any Banach space and 

a < b ,  0 < a <  1, 0 < f l  < 1, we set 

Zp,o(a, b; B) = {u" [a, b] ~ B; u EC'([a + e, b]; B) ~'e El0, b - a[, 

(2.7) II u IIz,..(o.b;~)= sup (t - a) p II u(t)I1~ 
a < t < b  

+ sup t#+a[U]c*(ta+e,b]~)< + O0~. 
O<e<b-a  J 

Such spaces are useful to describe the HOlder regularity properties of analytic 
semigroups (and parabolic evolution operators) up to t = 0: for instance, ifA 
generates an analytic semigroup e" in X, it is easy to see that the function 
t--,eUx belongs to Zo,o(0, T;X) n Za,o(0, T;Xo) for every tr, 0~]0,  1[ and 
x ~ X .  

2.1. The function e'A(')x 

For every x E X and s E [0, T], the function a --- e'AU)x belongs obviously to 
C®(]0, + oo[; D(A(s)) n) for every n EN, and 

On/ao"(e¢A(~)X)=(A(s))ne "A(~), O < s < T ,  ( r>0 ,  x E X .  

In particular, thanks to (2.3), a --. e'A(~)x belongs to C~( ]0, + ~ ]; D) and there 
are M~, M2 > 0 such that 

II e~aU)x II. =< a-IM1 II x II, 
(2.8) 

II A(s) e°A(s)x II, ---< a-~M2 II x II, 

a > 0 ,  O<--_s<-_T, 

Moreover, for every 0 E ]0, 1 [ there are Mo.o, M~,o > 0 such that 

(2.9) 

x E X .  

II e'AU)X Iio ~ a°- 'M~.o II x Iio, U A(s) e`ac')x IIo ~ ae-2M2,o II x Ila, 

t r > 0 ,  O<s<=T, x~Xe .  
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For every x E X  and tr > 0, the function s --,e°At')x belongs to C~( ]0, T]; D), 

and we have 

1 P 
(2.10) = e°a(S~x = ~ | e~°(2 - A(s))-lA'(s)(2 - A(s))- lx  d2 

OS g~l d r 

where y is a suitable path in the complex plane joining ~e-~° to ~ e  ~° for some 
OE]n/2, n[; ? may be chosen independent o f s  and such that 

(2.11) I I (A-A(s) ) - '  IILcx>~M/121, I lO . -A(s ) ) - '  IILcx,o)~M 

where M is some positive constant, independent of 2 and s. From (2.10) and 
(2.11) it follows easily that there are No, NI > 0 such that 

II O/Os e'AIS)x II ~ No II x II, II O/Os e°A(S)x IIo ~ a - 'N,  II x II, 
(2.12) 

or>0,  x E X .  

A belongs to Using again (2.10) and (2.11) and recalling that 
C ~ +~([0, T]; L(D, X)), we get also 

erA(s)x D f r t 0 e~¢,)x 0 < N2 a-2da II x II, 
Os Os 

(2.13) O<=s<T,= O<r<T,= x E X ,  

0 0 [ 0  eOA~,) x 0 ) 
e°alS)x' .. . .  - Os e°a(')x"-'° + a I~Os is - , , -  Os e°alS)x ['-~ D 

(2.14) 
<=N3(s~-So)"llxll, O<=so<=S~<=T, a > 0 ,  x ~ X  

where N2, N3 are positive constants. 

2.2. The function W(t, s)x 

In [14] we showed that t --, W(t, s)x belongs to ZI _#~(s, T; D), t ---- Wt(t, s)x 
belongs to Zt-#~(s, T; X) for every x ~ X and fl ~ ]0, 1 [; we showed also that 
s--, W(t, s)x is p-Hrlder  continuous for s < t -  e, e > 0, without giving 
precise estimates of its Hrlder  norm as e ---- 0. In this subsection we shall study 
some regularity properties of W(t, s)x up to t = s. The main result is the 
following: 

PROPOSITION 2.1. Let assumptions (2.1), (2.2), (2.3) hold. Then,for every 
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x E X there exists Ws(t, s )x for  0 <-_ s < t <= T, (s, t) v~ (0, T), and the following 
estimates hold: 

(2.15) (i) II ws(t, s)x II ---< K, U x U, 0 <= s < t <= T, x E X ,  

(ii) II Ws(t, s,)x - Ws(t, So)X II =< g2(a)(s, - So)='(t - s , ) -a  II x II, 
O< so < S~ < t  < T, x E X  

for every tr ~ ]0, 1 [. Moreover, for each 0 ~ ]0, 1 [ there is K3(0) > 0 such that 

II ws(t ,  s,)x - ws(t ,  So)X I1 ---< g3(O)(s, - so)°(t - s~)-~ tl x II o, 

(2.t6) O < = s o < s ~ < t < T ,  x ~ X o .  • 

For proving Proposition 2.1 we need some technical lemmas. 

L~.MMA 2.2. Under assumptions (2.1), (2.2), (2.3), for every x ~ X  and 
p~]0 ,  1[ the function t ~ W(t,  s)x belongs to Zo.p(s, T; D) and t ---, Wt(t, s)x 
belongs to Zo,p(s, T; X). There is C~(#) > 0 such that 

(2.17) II w( . ,  s)x II~.~,.T;o~ + II w,(. ,  s)x II~.~s.T;x)~c,(#)II x II. 

The proof is quite analogous to that of Proposition 2.2 of[14], the difference 
being that now A is Lipschitz continuous instead of only H61der continuous. • 

COROLLARY 2.3. Under assumptions (2.1), (2.2), (2.3), for  every • E [0, 1 [, 
tr ~ 10, 1 [, and f ~  Zp,o(s, T; X), the function u given by formula (1.2) (with 
uo = O) is the solution o f  problem (1.1) (with uo = 0), it belongs to Zp.,(s, T; D), 
and u' belongs to Z~.o(S, T; X). Moreover, there is C2(t0, tr) > 0 such that 

(2.18) II u II~,~s.~;o)+ II u '  II~,.a,.~;x~--< C~(/~, ~)II f II~,a,.~;x). 

The proof is the same as that of corollary 2.3(i) of[14]. • 

LEMMA 2.4. Under assumptions (2.1), (2.2), (2.3), there is C3 > 0 such that 

for every x ~ X and O < s < t < T, - s < h < T - t we have 

II w ( t  + h, s + h)x - W(t,  s )x  IIo + II W,(t + h, s + h)x - w , ( t ,  s ) x  II 
(2.19) 

< C31h I"(t - s) -='2 II x II. 

PROOF. The function 

v(t) = W(t + h, s + h)x - W(t,  s)x,  s < t < F 

(F = T - h if h >_- 0, F = T if h < 0) satisfies 

(2.20) v ' ( t )=A(t)v( t )+C)h(t )+Vh(t) ,  s < t < r ;  v(s )=O 
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where 

~)h(t) = [ A ( I  + h )  - A(t)] W(t + h, s + h)x, s < t <= F, 

Yh(t) = [Aft) - A(s)]e¢t-s't')x - [A(t + h) - A(s + h )]e('-'~4¢s+h)x, s < t <= F. 

Both ¢h and Yh are bounded  in [s, F] and H61der cont inuous  in [s + e, F]: 

actually, for every p E]0,  1[ we have, by (2.17) and (2.8), (2.12): 

II Cn(t)II + II ~'h(t)II 

--< { II a '  II ~ I h I C,(fl) + [h ' ]c .  I h I"M~ + II a '  II ~N, I h I } II x II 

and, for s < s + e < r < t < F: 

II C h ( t )  - -  On(r)II 

< {[A'lc* I h I(t - r)~C~(,O) + II a ' l l  ® I h I(t - r)P(r - s)-aC~(fl)} II x II, 

U ~,n( t ) -  gth(r)11 

"2([A']coM, + I I a '  I I~g , z ' -~ ) lh  I ° II x II; 

2 ( [a ' ]c . ( r  - s) o - 'M,  + II a '  II ~g , ) lh  I II x II ; 

2 II 1'11 ~(t - r)(r - s ) - I M ,  + H A' l l~(r  - s)M2 ~-2da II x II 
- - $  

_-< 2 II A'  II~(M, + M2)(t - r ) ( r  - s ) - '  II x II 

so that, for every a,  OE]O, 1[ with a + 0 N 1, we have 

II ~h(t) -- ~'h(r) II ----< C(~, O)(t -- r)~l h [0+.tl-0-o)e-a-O-~,)0 II x II. 

Choosing now a = ( 1 - a ) / 2  and 0 =a/2 ,  we find that Yh belongs to 

Zp.~(s, T; X), with fl = (a - a 2)/2, and its Zp.~-norm is bounded by const.  I h I"- 

Applying Corollary 2.3 to problem (2.20) we get the statement.  • 

PROOF OF PROVOSITION 2.1. In order to consider i.v. problems starting at 

t = 0, it is convenient  to introduce the function 

(2.21) V ( t , s ) x = W ( t + s , s ) x ,  O < = s < T ,  O < t < = T - s ,  x E X .  

Once we have shown that V is differentiable w.r.t, both arguments for 

0 < t < T - s, we will get 
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(2.22) W ~ ( t , s ) x = - V t ( t - s , s ) x  + V s ( t - s , s ) x ,  s < t < T ,  x E X  

and estimates (2.15), (2.16) will follow easily from the corresponding ones 

concerning V, and Vs. 
The function w(t )  = W( t  + s,  s ) x  is the solution of 

w'( t )  = A ( t  + s ) w ( t )  - [A(t + s ) - A ( s ) ] e " ~ S ) x ,  

(2.23) 0 < t < T - s ;  w(0) - -0  

and belongs to Zo,a(0, T - s; D), for every p ~ ]0, 1 [. Differentiating formally 
problem (2.23) w.r.t, s, we get an initial value problem for the unknown 

z ( t )  = V~(t, s )x:  

z ' ( t )  = A ( t  + s ) z ( t )  + A ' ( t  + s ) W ( t  + s,  s ) x  - [A'(t + s) - A ' ( s ) l e ~ ° ) x  

(2.24) 
- [A(t + s) - A(s)]d/Os(e~°)x) ,  0 < t < T - s; z(O) = O. 

We will show the following: 
(a) Problem (2.24) has a unique solution z ° )~  Zt_,, ,  (0, T - s; D), with 

(2.25) I[ z°)[I z .... ~0,r-s;o) + [1 (d /d t ) z  °) [I z,_.~o.r-s;x) < C4 [[ x [[. 

(b) limh-o,h~t-~,r-sl h - l [V( t ,  s + h ) x  - V(t ,  s)x] = zO)(t) for 0 < t _-_ T - s. 
(c) For every o" G ]0, 1 [ there is C~(a) > 0 such that 

(2.26) II z°)( t)  - z~°(t) II < Cs(cr) ls - r I =° II x II, x 

and for every 0 ~ ]0, 1 [ there is C6(0) > 0 such that 

(2 .27 )  U z°)( t)  - z~')(t) II -5_ c6(O)ls - r I II x II0, x Xo. 

PROOF OF (a). We have only to show that the functions 

O ( t ) = A ' ( t + s ) W ( t + s , s ) x ,  O < - _ t < T - s ,  

q/(t) = [A'(t + s) - A ' ( s ) ]e~° )x ,  0 < t < T - s ,  

• ( t ) = [ A ( t  +s) -A(s ) ]a /Os(eU~S)x) ,  O < t  < T - s  

belong to Zt . . . .  (0, T - s; X), and then to apply Corollary 2.3, since the family 
of  operators B ( t )  = A ( t  + s), 0 < t <= T - s, satisfies assumptions (2.1), (2.2), 
(2.3). We have: 
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t ' - " (  II 0(t)II + II gt(t)[I + II X(t) I I )  

/I-, ,( II A '  II ~C,('~) + [A ' l c . t " - 'M,  + II A '  II ~N~)II x II 

_-< {T ' -~  II a '  II ~(C,(,~) + NO + [A'Ic .M,)  II x II 

and,  for  0 < e  < r < t  <= T - s :  

U 0(t) - 0(r)II ---< e[h'lc.( t  - r)°C~(~)II x II + e l -°  II a '  II ~(t - r)°C,(~)II x II 

(T[A']c. + Z ' - "  II A'II  Of i (~ ) ( t  - r) ~ II x II, 

e II ~,(t) - g( r ) I I  --< e( II a ' ( t  + s) - A ' ( r  + s)II,¢o,x~ II e"<')x Iio 

+ II a ' ( r  + s) -A ' (s) I IL~.x)I I  e"(S~x - e'At~)X lid 

< (M~ + MJa)[A ' lc . ( t  - r)" II x II, 

e II z ( t )  - x(r)  II ---< e( II a ( t  + s) - a ( r  + s) II,¢D,x~ II O/Os(e~'¢*~x) lid 

+ II h ( r  + s ) -  a(s)II~cD,x~ II O/Os(e"¢'~x - e'~¢'~x)liD) 

<-_ (g ,  + Nz)II Z' l l  ~(t - r)II x It- 

Therefore  0 + ~' + X belongs to Z~ _ ~,, (0, T - s; X), and  s t a t ement  (a) holds 

thanks  to Corol lary  2.3. 

PROOF OF (b). For  0 < s < T, 0 < to < T - s ((s, to) 4: (0, T)) and  x E X, set 

Zh(t) = h - l ( V ( t ,  s + h )x  - V(t, s )x)  

= h - ~ ( W ( t + s + h , s + h ) x  - W ( t + s , s ) x ) ,  O<t<=to. 

I f  s = 0 and  to ÷ T, Zh is def ined for  0 < h < T - to; i f  s > 0, Zh is def ined for 

h ÷ 0, - s < h < T - to - s. We wan t  to show that ,  for  each to, Zh '-" Z as 

h ~ 0 ,  where  z is the solut ion o f  (2.24). The  func t ion  t ~ Z h ( t )  -- z(t) ,  0 < t < 

to, satisfies: 

z;,(t) -- z ' ( t)  = A (t + s)(zh(t) - z( t))  -I- fh(t), 0 < t < to; (Zh -- Z)(0) = 0 

where  

A(t)  = A ( t  + S ) ( z h ( t )  - -  z ( t ) )  

+ { h - ' [ A ( t  + h + s ) - A ( t  + s ) ] - A ' ( t  + s ) } W ( t  + s , s ) x  

+ h - ' [A f t  + h + s) - A( t  + s)][W(t + h + s, h + s )x  - W(t  + s, s)x] 

- {h - ' [ A ( t  + h + s )  - A ( t  + s)  - A(h + s)  + A(s)] 
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- [A'(t + s) - A'(s)]}e~¢S)x 

+ h -  1[A (t + h + s) - A  (t + s) - A  (h + s) + A ( s ) ] ( e  ta(h +S)x - -  eU~')x) 

- [A(t + s)  - A(s)][h-~(e 'A(~ +'~x - e"~'~x) - O/Os(eU(S)x)], 

O < t < t o .  

The linear operators B( t )  = A( t  + s), 0 < t < to, satisfy assumptions (2.1), 
(2.2), (2.3), andfh belongs to Z~_,,~(0, to; X) for each h, so that zh - z may be 
represented by 

Zh(t) -- z ( t )  = U(t,  o)A(o)da ,  0 _-< t ~ to 

where U(t, o)  is the evolution operator generated by the family {B(t)}. We 
want to prove that zh( t ) - - ' z ( t )  as h ~ 0  for every t~-[O, to]. Since U(t, o)  is 
bounded  in L ( X ) ,  we have only to show that fh ~ 0 in L~(O, to; X). 

We have: 

II {h-'[A(t + h + s) - A(t  + s ) ]  - A'(t + s ) }  W(t + s, s )x  II 

< [A']c-lh ]"C,(~)1] x 1[ (by (2.17)); 

II h - I [ A (  t + h + s ) - A ( t  + s)][W(t  + h + s , h  + s )x  - W( t  + s , s ) x l  II 

< I[ A" [[~C3t ~2lh I" 11 x [I (by (2.19)); 

I[ { h - ' [ A ( t  + h + s ) - A f t  + s ) - A ( h  + s ) +  A(s) l  

- [A'(t + s)  - A'(s)]}e'~'~x II 

< '(t + s + oh) - A'(t  + s) - A'(s + oh) + a ' (s) ldo , [I x [I 
L(D, 

< 2[A']c.M, Ih l '2t ~'--' II x II; 

l[ h - '[A (t + h + s) - A (t + s) - A (h + s)  + A(s) l (e  "~h +S~x - eU~)x) II 

< [ A ' l c . N , t " - ' l h l  II x II (by (2.12)); 

II [A(t + s)  - A (s)][h-~(e ~h +')x - e"C~)x) - O/Os(e~')x)] II 

< [IA'II~N3Ihl~I[ x 11 (by(2.14)). 

Therefore, fh --" 0 in L t(0, to; X) as h ---- 0, and statement (b) is proved. 

PROOV Or (c). Let 0 < r < s < T. The function 
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is the solution of  

w(t) = zt')(t) - ztr)(t), 0 < t < T - r 

w ' ( t ) = A ( t + r ) w ( t ) +  f( t ) ,  O < t < T - r ,  w(O)=O 

where 

f ( t )  = [A(t + s) - A( t  + r)]zs(t) 

+ [A'(t + s ) W ( t  + s, s )x  - A ' ( t  + r )W( t  + r, r)x] 

- {[A'(t + s) -A' (s)]e"tS)x  - [A'(t + r ) -A ' ( r ) ]eu t r )x}  

- {[Aft + s) -A(s)]c3/Os(eUt~)x) - [A(t + r) -A(r)]O/Or(e"tr)x)}, 

O < t < T - r .  

Arguing as in in point (b), we find 

sup [[ w(t) [[ < const.  [[ f [[L'(o,r-r,x). 
O < t < T - r  

For every tr El0 ,  1[ and t El0 ,  T - r[ we have, by (2.25), (2.17), (2.12), (2.14): 

II f ( t )  II --< { II A '  I I ~ C , r - ' ( s  - r) + [A ' ]e . ( s  - r )~Cl(~)  

+ II A' I I ~ o C 3 t - ° ' 2 ( s  - r )  ~ 

+ 2[A']c*Ml(s - r)~°t~l-o)-l + [A,]c.Nlt ~- i(s _ r) 

+ [ A ' ] c . N , ( s  - r)"  + II A '  II~N3(s - r r }  II x II. 

I f  x belongs to Xo, then 

II [.4'(t + s) - A'(s)le"t ')x - [A'(t + r) - A '(r)]eUt')x II 

< [A']c.gl,o(s - r)~t ~-I II x II0 + [ A ' ] c ' S , r - ~ ( s  - r)II  x II, 

the other estimates remaining unchanged.  Point  (c) is so proved. 

We are now ready to show estimates (2.15) and (2.16). Points (a) and  (b) 

imply that there exists O/Os(V(t, s)x)  = ztS)(t) for 0 < s < T, 0 ~ t < T - s 

((s, t) # (0, T)), and (2.22) holds. (2.15)(i) follows now from (2.17) and (2.25), 

recalling that z ' E  Z~_ ~,~ (0, T - s; X )  implies that z is bounded  with values in 

X. In fact, it is HOlder continuous, since we have 

~t z'(tr)da II z( t)  - z(r) 11 = -< a - ' ( t  - r) ~ sup II o ' - ~ z ' ( a )  II- 
O<a<_T-s  
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Let us show (2.15)(ii). By (2.19) and (2.17) we have, for 0 < So < st < t _-< Tand 
O < a < l :  

II v,(t  - st, st)x - v,(t  - So, so)x 11 

= II W , ( t ,  s O x  - W , ( t  - st + So, So)X II 

+ II W,(t - st + So, So)X - W,(t,  So)X II 

< C3(t - sl)-'e2(sl - So) ~ II x II + C,(a)(t - st)-"(s,  -- So) ~ II x II- 

(2.15)(ii) follows now from (2.25) and (2.26), whereas (2.15)(iii) follows from 
(2.25) and (2.27). • 

2.3. The function G(t,  s) 

Throughout the subsection, assumptions (2.1), (2.2), (2.3) are assumed to 
hold. 

PROPOSITION 2.5. For every x ~ X ,  G(t,  s )x  is differentiable w.r. t ,  s for 

t > s, and we have 

(2.28) (i) Gs(t, s )x  = -A(s)e~'-~)A~S)X + OIOs(e~A~)X)Io-,-, + Ws(t, s )x ,  

O < s  < t  < T, x E X ,  

(ii) Gs(t, s )x  = G(t,  r)G,(r, s )x ,  0 < s < r < t < T, x E X .  

Moreover, Gs(t, s )x  belongs to D for t > s and it is differentiable w.r. t ,  t for 

t > s, with 

(2.29) G ~ t ( t , s ) x = A ( t ) G ~ ( t , s ) x ,  O < s < r < t < T ,  x ~ X .  

l f  x E D, we have also 

(2.30) G,(t, s) = - G(t,  s )A(s )x ,  0 < s < t < T. 

I f  x E D and A (s)x  belongs to the closure o f  D in X ,  then G ( t, s )x  is differenti- 

able w.r. t ,  s up to t = s, and (2.30) holds also for t -- s. 

There are ~l, ?'2, ~q(0), 72(0) > 0 such that 

(i) II Gs(t,s)x II < T , ( t - s )  -I IIx II , x ~ S ,  
(2.31) (ii) II G,(t,s)x II <=r,(O)(t-s) °-' II x II0, x~Xo, 

(iii) II G,(t, s)x II --< ~, II x II o, x E D ;  
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(2.32) 
(i) II G,,(t,s)x II < 7 2 ( t - s ) - 2 1 1 x  II , x ~ X ,  
(ii) II G,t(t, s)x II ~ y2(O)(t - s) °-2 II x II0, x~Xo, 
(iii) II G,,(t, s)x II --< y2(t - s ) - '  II x Iio, x ~ O .  

For every a ~ ]0, 1 [ there is 7a(cr) > 0 such that 

II G,(t, s,)x - G,(t, So)X II ~ ~'3(a)(s, - So)~(t - Sl) -1 - a a  II x II, 
(2.33) 

For every 0 ~ ]0, 1 [ there is 74,o > 0 such that 

(2.34) 

0<So<Sz <t_--< T, 

II G,(t, so)x - Gs(t, s,)x [I 
/ et-So ) 

~Y4'O~3t s, tr°-2dcr +(t--s')-max{ct'l --0) (S,--So)°II x II0, 

O<so<Sl  < t  ~ T, 

Finally, there & 75 > 0 such that 

(2.35) 

x ~ X B .  

x ~Xo. 

PROOF. 

from the 
obviously that G,(t, s)x is differentiable w.r.t, t for t > s, and (2.29) holds. 
Concerning (2.30), it is easy to show (see [14, prop. 3.6(iv)]) that for every 
x ED with A(s)x ~_19, s - ,  G(t, s)x is differentiable in [0, t], and (2.30) holds 
for s _-< t ~ T. In the general case, set 

v(t) = G,(t, s)x + G(t, s)A(s)x, s < t <= T. 

Then v is differentiable for t > s, with v'(t) = A(t)v(t)  by (2.29). Moreover 

v(t) = [G(t, s) - e(t-s)atS)]A(s)x + a/Os(e¢'qs)x)lo_t_~ + W,(t, s)x 

= W(t, S).4(S)X -k a/Os(eaa(S)x)la_t_s -k Ws(t, s)x 

by (2.4) and (2.28)(i), so that v is continuous in Is, T], and (since x belongs to 
D) v(s) = O. Therefore, v is the classical solution of 

v ' ( t )=A(t )v( t ) ,  s < t  < T, v(s)=O. 

By uniqueness, v(t) = 0 for every t E Is, T], and (2.30) holds. 
Estimates (2.8), (2.9), (2.12), (2.15)0) imply (2.31)(i), whereas (2.31)(iii) is 

II G,(t, sOx - G,(t, So)X II <= r5(s, - So)"(t - s,)-" II x IIo, 

O < s o < S l < t < T ,  x E D .  

(2.28)(i) is a simple consequence of (2.4), and (2.28)(ii) follows 
equality G(t, s) = G(t, r)G(r, s), s < r < t. (2.28)(ii) implies 
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an obvious consequence of (2.30) and of the boundedness of II G(t, s) IlL(x). 
(2.31)(ii) follows now from (2.31)(i) and (2.31)(ii) by interpolation. 

From equalities (2.28)(ii) and (2.29) we get G,,( t , s )x = A ( t )G ( t , r )G~( r , s )x, 
0 < s < r < t < T. Using estimates (2.31) and estimates (2.11) of [14], and 
taking then r = (t + s)/2, we get estimates (2.32). 

(2.33) is a consequence of (2.8), (2.12), and (2.15)(ii), whereas (2.34) follows 
from (2.9), (2.12), (2.14), and (2.16). Let us show finally (2.35): for each x ~ D 
we have, by (2.31)(i), 

II Gs(t, s,)x - G~(t, So)X II 

---< II [G(t,s~)-G(t, So)]h(s.)x II + II G(t, So)[a(s,)-a(so)]X II 

L < 7, a - ' d t r  II a(so)X II + II G(t, So)IILIxI II a '  II~(s~ - So)II x II 

and (2.35) follows easily. 

With the aid of estimates (2.31) we can show an integration by parts 
formula, which will be used in the next section. 

COROLLARY 2.6. Let 0 <= a < b <= T, and let f E Ct([a, b]; X). Then 

f tG( t , s ) f ' ( s )ds= - f a~G s ( t , s ) [ f ( s ) - f ( t ) ]d s  

(2.36) - G(t, a)[f(a) - f(t)], a < t < b. 

If, in addition, f is bounded in [a, b] with values in Xo for some 0 E ]0, 1 [, then 
we have also 

fat G(t, s) f'(s)ds -- - f a t 

(2.37) 

Gs(t, s)f(s)ds + f( t)  - G(t, a)f(a), 

a < t < b  

PROOF. For a < t < b  and for each e E ] O , t - a [ ,  the function 

s-- ,G(t,  s ) [ f ( s ) -  f(t)] is continuously differentiable in [a, t -  e], and we 

have: 

O/Os( G(t, s)[f(s) - f(t)l} = G,(t, s)[f(s) - f(t)l  + G(t, s) f'(s). 

Integrating between a and t - e we find 
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a'-'  G(t,  s ) f ' ( s )ds  = : a ' - '  Gs(t, s )[ f (s)  f ( t )]ds 

(2.38) 
+ G(t,  t - e)[f( t  - e) - f(t)] - G(t, a)[ f (a)  - f(t)]. 

Letting e---0 in (2.38) and recalling estimate (2.31)(i), we find (2.36). If, in 
addition, f i s  bounded with values in Xo, we can repeat the above procedure 
with the function d/as[G(t,  s) f(s)]  replacing O/Os{G(t, s)[f(s) - f ( t ) ]} .  Since 
Xo is contained in the closure of D, G(t, t - e ) f ( t )  goes tof( t )  as e ~ 0  due to 
Proposition 3.6(ii) of[14], and (2.37) follows easily from estimate (2.31)(ii). • 

In view of Corollary 2.6, we are interested in the regularity properties of the 
function 

(2.39) u(t)  -- Gs(t, s ) f ( s )ds ,  a < t < b. 

Using estimates (2.31) and (2.32), many regularity properties of u could be 
stated; for the sake of brevity we only give a result which will be used in the 
next section. 

PROPoSrrlON 2.7. Let  fbe long  to C#([a, b]; Xo) with 0 + fl > 1, and f (a )  = 
O. Then the funct ion u defined in (2.39) belongs to C#+°([a, b];X), u - f  
belongs to C#+°-~([a, hi; D), and  

(2.40) u'(t) =A( t ) [u ( t )  - f(t)], a = < t = < b. 

Moreover, there is C7(0, B) > 0 such that 

(2.41) II u II e+' to,bl;x  + II u -- f II e÷'-'([a,b];D) ~-  C7(0, #) II f II C#([a,b];xo) • 

PROOF. First of all, we show that u(t)  - f ( t )  belongs to D for every t, and 
t ~ A ( t ) [ u ( t ) -  fit)] is (0 + f l -  1)-H61der continuous. By Corollary 2.6 we 
have 

(2.42) u(t) - f ( t )  = G,(t, s )[ f (s)  - f ( t ) lds  - G(t,  a ) f ( t ) ,  a <-_ t ~ b. 

By estimate (2.32)(ii) and assumption (2.3), we get 

II G,(t, s ) [ f ( s ) -  f(t)] Iio --< const. (t - s )  °+#-2, 

so that u(t)  - f ( t )  belongs to D for every t ~ [a, b]. Moreover, using equality 
(2.4), we get 
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A (tl)G(tl  -- r )x  -- A (to)G(to, r )x  

= Wt(t , ,  r )x  - Wt(to, r )x  + A(r)[e~t , - '~ ' )x  - e~to-'~')x] 

for 0 < r < to < t~ < T, so that, by (2.17) and (2.8), there is k~(O, fl) > 0 such 

that 

II A( t ) ,G( t , ,  r )x  - A(to)G(to, r )x  II 

for 0 < r < to < tl < T and x E Xo. By equality (2.28), we have 

A (tt)Gs(tt - s ) x  - A (to)Gs(to, s ) x  

= [A(tOG(tl ,  r) -A ( to )G( to ,  r)]Gs(r, s ) x  

for 0 < s < r < to < t~ < T. Taking r = (to + s) /2 and using (2.43), (2.31)(ii) we 

get 

II A(t l )G,( t , ,  s ) x  --A(to)G,(to, s ) x  II 

kl(O, fl)7,(O)[(tl - to) °+#- l(to - s)  -# 
(2.45) 

+ (tt - to)(to - s )°-2(2t t  - to - s ) - l ]  [1 x 11 o, 

O ~ s < t o < t t ~ T ,  x E X o .  

Using now estimates (2.32)(ii) and (2.44), (2.45), together with estimate (2.11) 

of  [ 14], we find 

II A (t,)[u(tO - f(t ,)] - A (to)[U(to) - f(to)] 1[ 

fa '° < [A (tl)Gs(tl, s)  - A (to)G,(to, s )][ f (s)  - f(to)lds 

f" + ° A ( t O G A t , , s ) [ f ( s ) - - f ( t 3 1 d s  + IIA(t , )G(t , ,  t o ) [ f ( t o ) - f ( t , ) l  II 

+ II [A(to)G(to, a)  - A ( t , ) G ( t , ,  a)l f( to)II  

(2.44) [ f' o] < k2(O, fl) (tl - to)°+#-l(to - r) 1-°-# + tr°-2 II x IIx, 
~J  t o -  r 

[ r (2.43) < k,(O, fl) (t, - to)°+#-'(to - r) 1-°-# + a -2  II x II 
~J  to - r 

for 0 < r < to < tl < T and x ~ X, and 

II A(tOG(t l ,  r )x  - A(to)G(to, r )x  II 
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_-__ ~(0, #)~q(O) [(t~- to)°+P-~ + ( q -  toXto- s)°+P-2(2tl- to-  s)-~lds 

g, + ~2(0) (tl - -S)°+#- ldS  + c(O)(tl -- to) O+p- t 

[ r ]} +k~(O, fl) (t]--to)°+B-l + S °÷p-2ds [f]c'~t~,b];X.) 
, ~  to  - a 

kl(O, fl)71(O ) b - a  + o°+P-2(2+a) -l +yl(O)(O+fl - 1) - l  

a)~-o + (o + fl _ l)-~]} (fi _ o+p-~ + c(O) + k2(O, fl)[(b - to) [f]cP(ta,Ol;Xo). 

Let us show now that  u is differentiable and (2.40) holds. We have, for 
a < t  < t  + h  <b:  

u(t + h) - u(t) _ A(t)[u(t) - f ( t ) l  
h 

Q t [ G s ( t + h , s ) - G s ( t , s )  ] 
< -A( t )Gs( t ,  s) [f(s)  - f ( t ) ] d s  
= ~ h 

+ GAt + h, s)[f(s) - f( t  + h)lds 

Q , Gs(t + h, s) - G~(t, s) 
+ .~ h f(t)ds 

+ ~ t+hG~(t h h ' s )  f ( t  + h)ds + A( t )G( t ,a ) f ( t )  

[ < [A(t + ah)G~(t + oh, s) -A ( t )G , ( t ,  s)]do[f(s) - f ( t ) ] d s  

f t+hG,(t + h , s )  
+ [f(s)  - f ( t  + h)]ds 

• ~t h 

+ II h-~[G( t + h, t) - l ] [ f ( t )  - f ( t  + h)] II 

+ II {h-~[G( t + h, a) - G(t, a)] - A ( t ) G ( t ,  a)}f(t)II 

= l , ( h )  + I2(h) + I3(h)  + I,(h). 

Thanks  to (2.45) we have 
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~[  [ sh )] ds[ flc'tt~.bl.xe) l~(h)<k2(O'fl) s°+P-lh°+P-' +( t  - s )2-° -P(2h + t  - s  

[ fo <k2(O, fl)h °+#-I b - a  + a°+#-2(2Wtr) -l [f]c'(ia,bl;Xd" 

Using (2.32)(ii) we get 

f 
t + h  

I2(h ) < 72(0)h -1 (t + h - s) °+p- Ids[f]cP(la.bl;x,) 
~ t  

< 72(0)(0 + fl) - 'h ° +p-l[f]cp([a,b];Xd. 

Thanks to Proposition 2.6(iv) of  [14] we have IIG(t,s)x-xll <= 
c(O)(t - s) ° II x II0 for t > s and x ~Xo, so that 

I3(h) < c(O)h °+p- l[f]cP(ta.bl;Xe). 

Finally, for t = a we have I4(h) = 0 for every h, whereas for t > a we have 

obviously limb_0 I4( h ) = O. 
Therefore, A (t)[u(t) - fit)] is the right derivative of u(t) for each t ~ [a, b[. 

Since both u and A (.)[u (.)  - f ( .  )] are continuous in [a, b[, then u is differen- 
tiable in [a, b[ and (2.40) hold for a < t < b. Since u'  is uniformly continuous 
in [a, b [, then u is differentiable also at t = b, and (2.40) holds. • 

REMARK 2.8. Assumptionf(a)  = 0 in Proposition 2.7 was made in order 

to prove regularity of u up to t = a. One can easily see that, i f f (a)  # 0, then u 

belongs to CP+°([a + e, b]; X), u + fbelongs  to CP+°-'([a + e, b]; D), and 
(2.40) holds in [a + e, b] for every eE]0,  b - a[. • 

The following proposition is concerned with further regularity of G(t, s) 
w.r.t, t, which is much easier to be treated than further regularity w.r.t.s. 

PROPOSITION 2.9. The function t ~ G(t, s)x is twice continuously differen- 
tiable in ]s, T] for every x E X, and there are constants 76, 77, 76(0), 77(0) such 
that we have: 

(2.46) 
(i)  II G.(t ,  s)x II ~ 76(t - s )  -2  II x II, 0 ~ s < t < T, x ~ X ,  
(ii) II Gu(t, s )x  II --< 76(0)(t - 8) 0-2 II x II0, 0 ~ s < t < T, x E X o ,  

( i i i )  II G.(t ,  s)x II --< 76(t - s ) - '  II x Iio, 0 ~ s < t <= T, x ~ O ;  
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(2.47) 

(i) II G , ( t , ,  s ) x  - G.(to, s )x  II ~ 77(tl - to)~(to - s ) -  2-~ II x II, 
0 < s  < t 0 < f i  < T, x E X ,  

(ii) II G . ( t . s ) x -  G,,(to, S)X II =< ~'7(OXt,- to)"(to- s) -~-°+° II x II II x II0, 
O < s  < t o < t 1  <= T, xEXo ,  

(iii) II G,,(t,, s)x - G,(to, s)x II < 77(tl - to)~(to - s)-~-" II x II o, 

O < s  < to<t t  <= T, x E D .  

PROOF. Let 0 < s < T and e ~]0, T -  s[. Consider the problem obtained 

differentiating formally (1.1) w.r.t, time in [s + e, T] with f =  0): 

(2.48) 

v'(t) = A(t)v(t) + A'(t)G(t, s)x, 

s + e < t < T ;  v(s + e ) - - A ( s  +e)G(s +e , s )x .  

It is easy to check that t ---,A'(t)G(t, s)x belongs to C~([s + e, T]; X) and 

v(s + e) belongs to the closure of  D. Therefore (2.48) has a unique solution v, 

and, by estimates (3.6)(a) and (2.10) of[14], we have: 

II v ' ( t )  U 

(2.49) 

Therefore 

+ II v ( t ) I io  ~ const- (  II A ' ( . ) G ( . ,  s ) x  II c'~t,+,,~l:X) 

+ (t - s - ~)-'  tl A(s + e)G(s + e, s)x II ), 
s + e < t < T .  

II v'( t)II  =< const . ( t  - s  - e ) - t e  -I II x II 

II v ' ( t )  I[ ~ const . ( t  - s - e ) - ' e  ° - I  II x II0 

II v'( t)II  =< const . ( t  - s - e) -I II x Iio 

if x E X ,  

if x ~ X o ,  

if x ~ D .  

Thanks to estimates (3.6)(a) and (2.12) of  [14], we have also 

II v ' ( t )  - v ' ( r )  II + II v ( t )  - v ( r )  Iio 

< const. [(r - s - e) -l  II A'( . )G( . ,  s)x II ~'tls +~,rl:x) 
(2.50) 

+ (t - s - e) ~-" II a( s  + e)G(s + e, s)x II ](t - r)", 

s + e < r < t < T .  

Now, it is not difficult to prove that to prove that v ( t )=  Gt(t,s)x = 
A(t)G(t, s)x, we have to write down the i.v. problem satisfied by vh(t)= 
h-~[G(t + h, s ) x -  G(t, s)x] in Is + e, T]; this lets one check that vh ~ v  

uniformly in [s + e, T]. Estimates (2.46) and (2.47) follow now easily. • 
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3. A representation formula in nonhomogeneous I.B.V. problems 

We consider here problem (1.3), under the ellipticity condition 

(3.1) a ~ j ( t , x ) ~ j > v l ~ l  2, O < t < T ,  x E D ,  ~--(~1 . . . . .  ~ ,)~R";  

f~ is a bounded open set in R", with C 2 boundary Off. The coefficients of the 
operator 

(3.2) d ( t )  = ao(t, .)D o + b~(t, .)D, + c(t, .), 0 <-_ t < r 

satisfy the following regularity assumptions: 

(3.3) for every i , j  = 1, . . . .  n, a o, b~, care C ~+° with respect to time, a o is C 2 
w.r.t, x, b~ is C ~ w.r.t, x, c is continuous w.r.t, x, and we have: 

sup II ao(', x)II e+.~to, m ~ + sup II bi(., x)Ile+.~to, m} + sup II c ( . ,  x)Ile. .~to,~ < + ~ ,  
xEt'l xEt'l xE~ 

sup II a~j(t,.)IIc'ca~+ sup II b~(t,.)IIc'~a~+ sup II c(t,.)IIc~a~< + ~ .  
O <t <T  O< t< T  O<t<_T 

3.1. The Dirichlet boundary condition 

Under  assumptions (3.1), (3.2), (3.3), we consider problem 

u,(t ,x)  = (~¢(t)u(t))(x), 0 < t < T, x ~ f ,  

(3.4) u(0, x ) =  uo(x), x E f ,  
u(t, x) = g(t, x), 0 -<_ t <_- T, x ~OFL 

We fix p E ] l, + ~ [, and we choose 

(3.5) x = LP(fl), D = W2,P(~) n W~,~(fl). 

Then the family of operators 

(3.6) A(t) :D ~ X ,  A ( t ) f =  ,~( t ) f ,  0 ~ t <_ T 

satisfies assumptions (2.1), (2.2), (2.3), thanks to [4], [3]. Therefore there exists 
the evolution operator G(t, s) associated to the family {A (t)}, and s --- G(t, s) 
is differentiable for t > s with values in L(X,  D). We assume, for simplicity, 

(3.7) 0 Ep(A (t)) for each t ~ [0, T] 

and we define the Dirichlet mapping D(s):W2-~'P.P(Ofl)~ W2,p(f) by 
D(s)g = v, where v is the solution of (see [4]) 
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(3.8) M(s)v = 0 in ~, Vlen = ~u. 

Then D(s) belongs also to L(LP(O~), W*/u-'.P(f~)) for every e > 0. This was 
shown in [12, th. 10.1] in the case where df~ and the coefficients of ~(s)  are of 
class C ®. But one can see, repeating the proof of Th. 10.1 of [ 12], that Of~ of 
class C 2 and assumptions (3.3) are sufficient. Now, recalling again assumption 
(3.3), it is easy to see that 

s --" D(s )~  C~([0, T]; L(LP(O[2), W~/P-"P([~)) 

(3.9) N C([0, T]; L ( W  2- ~/P'~(Of~), W2'p(f~)). 

PROPOSITION 3.1. Under the previous assumptions and notation, for 
every UoE l~,p(f~), g:  [0, T] X 0f~---R s.t. t - - ,g( t , . )ECl([O,  T],LP(O~)) A 

C([0, T], W ~- ~'P.P(0f~)) and Uoloa = g(O,. ), problem (3.4) has a unique solution 
u, such that t --- u(t, . ) belongs to C~([0, T], LP(fl)) ¢q C([0, T], W2,P(f~)), and u 

is given by formula (1.4). We have also 

(3.10) 

u( t , .  ) = G( t ,  0)(u0 - D(O)g(O,.  )) 

_ f t  G(t, s)[d/ds(D(s)g(s,.))]ds + D(t)g( t , .  ), 
,do 

O < t < T .  

PROOF. Uniqueness of the solution to (3.4) follows obviously from unique- 
ness in the homogenous problem. Let us show that the function u defined in 
(3.10) is the solution of (3.4). Since g(0, .) belongs to W2-~/P'P(0D), and 
D(0)g(0,.) belongs to W2,p(D) and, due to the compatibility condition 
Uolm = g(O,.), we have u0 - D(0)g(0, .) ~ D. Moreover, for every 0 ~ ]0, l/2p[ 
the interpolation space Xo coincides algebraically and topologically with the 
Besov space B~°'P([2) thanks to [8]. Since W'/P-~,'(D) is continuously embed- 
ded in B~P-~(f~) for each e El0, l /p[ (see, e.g., [18, th. 4.6.1 p. 327]), then, due 
to (3.9), t - ~ d / d t  (D(t)g(t , . ))  belongs to C([0, T], X0) for each 0El0, l/2p[. 
Therefore, by Proposition 2.6(v) and Proposition 3.5(ii) of[14], the function 

v(t) = u(t , .  ) - D(t)g(t ,  • ), 0 < t < T 

belongs to C~([0, T], X) N C([0, T], D) and satisfies 

v'(t) =A(t )v( t )  - d/dt(D(t)g(t , . )) ,  0 _-< t _-< T; v(0) -- Uo - D(0)g(0, .). 

Using again (3.9), we find that t - , D ( t ) g ( t ,  .) belongs to C([0, T], W2.P(fl)). 
Summing up, we get t ~ u ( t , . ) E  Cl([0, T], LP(fl)) N C([0, T], W~,P(fl)), and 
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u satisfies (3.4). The representation formula (1.4) for u is obtained integrating 
by parts in (3.10); this can be done thanks to Corollary 2.6. • 

(3.11) 

3.2. The mixed boundary condition 

Under assumptions (3.1), (3.2), (3.3), we consider now problem 

ut(t,x)=(~g(t)u(t))(x),  O < t < T ,  xE t2 ,  

u(O,x) = Uo(X), x e [ l ,  

~ u ( t , x ) = g ( t , x ) ,  O<=t<=T, x E a ~ ,  

where 

(3.12) 

and 

(3.13) 

~ f ( x )  = fl,(x)D,f(x) + 7(x)f(x), x Eaf~ 

fl~, 7~Cl(O~); fl~(x)v~(x) v~ 0 for xEa[ l .  

We repeat the procedure of the previous subsection, setting 

(3.14) X = LP([l), D = {rE WE.p([I); fl, D , f +  7]" = 0 on a[l}. 

Again, the family of operators A (t) defined by (3.6) satisfies assumptions  (2.1), 
(2.2), (2.3) thanks to [4], [3]. We assume that (3.7) holds, and we define the 
mixed mapping M(s) : WI,uP, P(O~)~ W2,p([I) by M(s)~ = v, where v is the 
unique solution of the elliptic problem 

(3.15) ~¢(s)v=0 in[l ,  f l~D~v+Tv=~ ona[l. 

Then M(s ) belongs also to L(LP(O[2); W 1 + I/p-~,p([I)) for every 
e ~ ]0, 1 + 1/p [, thanks to [ 13, th. 4.1 ]. In fact, in [ 13] it is assumed that a[l and 
the coefficients of ~¢(s) and ~ are of class C ®, but one can check that the 
statement of Theorem 4.1 in [ 13] holds true also under our hypotheses. Now, 
using assumption (3.3), it is not difficult to see that 

s - - M ( s ) E  C'([0, T]; L(LP(Of~), W' + l/p-,,p(f~)) 
(3.16) f) C([0, T]; L( W ' -  IIp,p(a~~), w2,p(~~)). 

PROPOSITION 3.2. Let assumptions (3.1), (3.3), (3.13), (3.7) hold. Then for 
every uoE W2'P(fl), g:  [0, T] X afl-~ R such that 

t -:  g(t,. )~ C"~([0, T], LP(O[I)) N C([0, T], W ~- '/P,P(Of~)) and ~Uo = g(O,. ), 
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the function u given by formula (1.6) belongs to C~([0, T] ,LP(f l ) )~  
C([0, T], W2'"(o~)) and it is the unique solution o f  problem (3.11). 

PROOF. One can get heuristically formula (1.6) arguing as in the proof of 
Proposition 3.1; but in this case a formula similar to (3.10) does not make 
sense, since M ( s ) g ( s , . )  is not differentiable. However, (1.6) makes 
sense, because t - -*M( t )g ( t , . )  belongs to C'a([O,T],Xo) for every 
0 ~ ]0, 1/2 + l/2p[ : actually, it belongs to C~/2([0, T], W' + ~/p-',p(f~)) thanks to 
(3.16), and W1+~/P-'.P(fl) is continuously embedded in the Besov space 
B~+t~P-"P(fl) (see, e.g., [18, th. 4.6.1 p. 327]), which coincides algebraically 
and topologically with )to for 0 = 1/2 + l /2p  - e l 2  due to [8]. Therefore 
formula (1.6) makes sense, thanks to estimate (2.32)(ii). To show the state- 
ment, set u(t , .  ) = u~(t) + u2(t), where 

u,(t) = G(t,  0)(u0 - M(0)g(0, .)) + M(0)g(0, .), 0 < t =< T, 

u2(t) = Gs(t, s ) (M(s )g(s , . )  - M(0)g(0,.))ds, 0 < t < T. 

Since g(0,. ) belongs to W ~ - '/P,P(0fl), then M(0)g(0,.  ) belongs to W2,P(D) and, 
due to the compatibility condition ~'u0 = g(0,. ), we have Uo - M ( O ) g ( O , .  )E  

D; therefore t ~ G(t,  0)(Uo - M(O)g(O,.)) belongs to C~([0, T], X) N 
C([0, T], D), so that ut belongs to CZ([0, T], LP(fl)) N C([0, T], W2,P(~)) and 
satisfies 

u~(t) = A( t )G( t ,  0)(Uo - M(O)g(O,. )) 

= ~ ( t )u , ( t )  - ~( t )M(O)g(O, . ) ,  0 < t < T, 

u~(0)=uo, 

YSu,(t) = g(0,.),  0 < t < T. 

We remarked before that t -~ M ( t ) g ( t , .  ) belongs to Cm([0, T], Xo) for every 
0~]0 ,  1/2 + 1/2p[; choosing 0~]1/2,  1/2 + 1/2p[ and applying Proposition 
2.7, we find that u2 belongs to C~([0, T], LP(~2)), t -~ u2( t ) -  M ( t ) g ( t , . ) 4 -  

M(0)g(0,-) belongs to C([0, T] ,D)  (so that, due to (3.16), u2 belongs to 
C([0, T], W2.P(fl))), and 
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u~(t) = A(t) [u2(t )  - M ( t ) g ( t , . )  + M(O)g(O, . ) ]  

= s t ( l )u2( t )  + ~ l ( t )M(O)g (O , . ) ,  0 < t < T,  

u2(0) = 0, 
~u2(t) = - 8 [  - M ( t ) g ( t , .  ) + M(0)g(0, .)] -= g ( t , .  ) - g(O, .  ), 0 < t <= T. 

Summing up, we find that u belongs to Cl([0, T], LP(~) )  ~ C([0, T], W2.~(f~)) 

and satisfies (3.11). Finally, uniqueness of  the solution to (3.11) is an obvious 
consequence of uniqueness in the homogeneous case. [] 
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