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ABSTRACT
We give further regularity results with respect to (¢, s) for the evolution
operator G(t, s) of abstract parabolic initial value problems in general Banach
space. Such results are then used to establish a representation formula for the
solutions of parabolic initial-boundary value problems with nonvanishing
data at the boundary.

1. Introduction

The study of the evolution operator for abstract parabolic equations in
general Banach space X began in the 1960’s with the papers of Sobolevskii and
Tanabe ([15], [16]), who studied initial value problems of the kind

(1.1) wty=A@Wu@)+ ft), s<t=T; u@s)=u,

under the assumptions that the linear operators 4(¢) have the same domain D
and generate analytic semigroups in X, and ¢t — A(¢) is Hoélder continuous with
values in L(D, X). Further developments of the theory led one to consider the
case of non-constant domains D(A(t)) (see e.g. {9]), [20], [1], [5] and the
references quoted there). All these papers are devoted to existence and
estimates, in several norms, of ¢t — G (¢, 5), and to the variation of constants
formula, which gives (under suitable assumptions on ¥, and /) the solution of
problem (1.1):
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t
(1.2) u@®)=G(t, s)uy, + f G@t,0)flo)de, s=t=T.

Not much seems to be known about further regularity properties of G(¢, 5)
(especially w.r.t. 5), which is the subject of the present paper. Komatsu showed
in[10] that, if 4(-)4(0) ~! is analytically extendible to a complex sector around
the positive real semi-axis, then (¢, s)— G(t, s) is analytic for ¢t > s. Gevrey
regularity was studied by Tanabe in his book [17].

Here we consider the case of constant (but not necessarily dense) domain D,
and we assume that t —A(¢) belongs to C'*([0, T}; L(D, X)). Among the
results, we quote the following; for every x € X, G(¢, s)x is C*>** with respect to
t and C'*=~¢ with respect to s in the set {(z,s)ER?, 0=s <t = T} for each
¢ > 0; moreover G,(¢, s)x and G,(¢, s)x have singularities like (t — s) ™! and
(t — s) 2, respectively, as t approaches s. Estimates for G,(z, s)x, G, (¢, s)x and
G,(t, s)x are given also for x belonging to some interpolation space between D
and X; they turn out to be optimal, compared with the corresponding ones in
the autonomous case A(t)=A. For deriving such estimates, we use the
construction of the evolution operator of [14].

As an application, in Section 3 we consider a parabolic non-homogeneous
initial-boundary value problem (here and in the following, repeated indices
mean summation);

u,(t, x) = a;(t, x)Du(t, x) + b;(t, x)D;u(t, x) + c(t, x)u(t, x),

0<t=T, x€Q,
130, x) = ugn), xeQ,
Bu(t,x)=g(,x), 0<t=T, x€0Q,

where Q is a bounded open set in R* with smooth boundary 4Q, and either
(#Bf)x) = fix) (Dirichlet boundary condition) or (#f)(x) = 8:(x)D, f(x) +
y(x) f(x) (mixed non-tangential boundary condition). Under suitable assump-
tions on the data, we show that, in the case of the Dirichlet b.c., the solution of
(1.3) admits the representation

(14)  ult,)=G(t, Oyuip + fo "Gt 5)D(s)g(s, s, O=t=T.

Here G(t,s) is the evolution operator in the space X = L?(2) generated
by the family A(¢): D — X, A(t)f=ay(t,")Dyf+ bi(t," )D;f+c(t,-)f, D=



Vol. 68, 1989 PARABOLIC EVOLUTION OPERATOR 163

wr(Q) N WEA(K2) and D(s) is the so-called Dirichlet mapping at the time s,
i.e. D(s)y is the solution v of

(1.5)  ay(s,-)Djv+bi(s,")Div+c(s,")v=0 InQ, v=y indQ.

A similar representation formula holds in the case of the mixed boundary
condition: we get

(1L6)  ult,")=G(, O+ fo Gt IM(s)gs, Yds, 120
where, now, G (¢, s) is the evolution operator in the space X = L?({2) generated
by the family A(¢): E— X, A(t) f=a;(t,-)D;f + b(t,-)D, f+ c(t,-) f,
E = { fEW**(Q); Bi(x)D; f(x) + y(x) fix) = 0 on 3Q}
and M(s) is the “mixed mapping” at the time s, i.e. M(s)y is the solution z of
ay(s,-)Dyz + bi(s,)Diz +¢(s,))z=0 inQ,
(-7 B(-)Diz+y()z=y inoQ.

Formulas (1.4) and (1.6) are quite similar to the corresponding ones in the case
where A does not depend on time, introduced by Balakrishnan in [7}; it is of
interest in boundary control theory (see, e.g., the papers [11], [19], and the
book [7], concerning the autonomous case). Other generalizations of the
Balakrishnan formula to the time-dependent case may be found in [6], {2].

2. Further regularity results

Let X and D be Banach spaces, endowed with the norms || ||, || [»
respectively, and let 0 <a <1, T >0, A(z) : {0, T]— L(D, X) be such that

(2.1) t=A(EC(0, T]; L(D, X)),
(2.2) for every t €[0, T}, A(2) generates an analytic semigroup ¢*® in X,

2.3) thereisc = 1suchthatc™' | x o = | x || + J4@Ox || =c x|
" foreachx€D, 0=t =T.
Then (see [14]) there is a family of evolution operators G (¢, s) € L(X) such that

(2.4) G(t,s)=e" MO+ W(,s), O0=s=t=T
where t — W{t, s)x is the unique solution w of

(2.5) w(t) =A(s)w(t) + [A({t) — A))(w(t) + &' ~Mx), s<t = T; w(s)=0.
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We shall use the representation formula (2.4) for studying further regularity
properties of G(¢,s). With this aim we shall consider the family of real
interpolation spaces

(2.6) Xo=X,D),, 0<O<I

(see [18, ch. 1.14] for equivalent definitions and norms).
We also introduce a class of Banach spaces: if B is any Banach space and
a<b,0<o<1,0=B8<1, we set

Zs,(a,b; B)= {u :[a, b= B,ucC(a +¢,b);B) VeE]0, b —al,

(2.7) Il 4 |z = sup (¢t —a)? || u(®)|is

a<t<b

+ sup 8ﬁ+a[ulcﬂ([a+e,b];3)< + W} .
O<e<b-—a

Such spaces are useful to describe the Holder regularity properties of analytic
semigroups (and parabolic evolution operators) up to ¢ = 0: for instance, if A
generates an analytic semigroup e“ in X, it is easy to see that the function
t —e"x belongs to Z,,(0, T; X) N Zy,(0, T; X,) for every o, 6€]0, 1] and
XEX.

2.1. The function e**“)x

For every x € X and s €0, T, the function ¢ — ¢*¢)x belongs obviously to
C>(]0, + oo[; D(A(s))") for every n €N, and

3"/30™(e™)x) = (A(s))"e™®, 0=s=T, >0, xEX.

In particular, thanks 10 (2.3), 0 — ¢™%x belongs to C*(]0, + «1; D) and there
are M;, M, > 0 such that

e Ox =o' M, x|, | A@e"x |, Sa M| x|,
(2.8) 6>0, 0Ss=T, x€X.
Moreover, for every 8 €10, 1[ there are M, 4, M, > 0 such that

Iex oS a® Mg % llos || 46)e™Ox |l < 0"~ My | X |l

2.9) 0>0, 0=s=T, x€X,.
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For every x EX and o > 0, the function s — e™“x belongs to C!(]0, T]; D),
and we have

1
(210) et = = [ ¢~ 4(s) AN~ AG) ' x
s 2ni Jy
where y is a suitable path in the complex plane joining cce =" to e for some
08 E€]n/2, n[; y may be chosen independent of s and such that

2.11) A =AE) e =ML, NA—=AG) " exmy=M

where M is some positive constant, independent of 4 and s. From (2.10) and
(2.11) it follows easily that there are Ny, N, > 0 such that

10/3s e™Ox || <Ng || x ||, ||8/8s e x ||, <a~'N, || x|,

2.12) 6>0, x€X.

Using again (2.10) and (2.11) and recalling that A belongs to
C'*«([0, T); L(D, X)), we get also

3 ety — 3 x| =N, [0 %o x|l
ds ds »- 2, ’
2.
(2.13) 0=s=T, O<r=T, x€X,
d d d J
5; eaA(S)xls—sl — 5; edA(S)xls-So + g (5.; e“A(s)xls_sl _— & eaA(S)x |S-So> ,

(2.149) SEN(s; =)l x|, 0=s5=5,=T, 0>0, x€X

where N,, N, are positive constants.

2.2. The function W(t, s)x

In [14] we showed that 1 — W(t, s)xbelongs to Z, _g4(s, T; D), t — W (¢, 5)x
belongs to Z,_4(s, T; X) for every x €EX and S €]0, 1[; we showed also that
s— W(t, s)x is f-Holder continuous for s <t —e¢, ¢ >0, without giving
precise estimates of its Holder norm as ¢ — 0. In this subsection we shall study
some regularity properties of W(t, s)x up to ¢ =s. The main result is the
following:

ProrosITION 2.1. Let assumptions (2.1), (2.2), (2.3) hold. Then, for every
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X € X there exists W(t,s)xfor0=s <t =T, (s, t) # (0, T, and the following
estimates hold:

2.15) @) | W@, 9)x|| =K | x|,0=s<t=T,x€X,
(1) || W2, s)x — Wlt, so)x || < Kfo)s — $)(t —s) | x ||,
O0=s=5<t=T,x€EX

for every a €)0, 1{. Moreover, for each 6 €10, 1 there is Ky(6) > 0 such that
| Wt 5% — Wit so)x | < Ko(6)(si = 80t =527 | % [ o,
(2.16) 0=s5,=s5,<t=T, x€X,. 1
For proving Proposition 2.1 we need some technical lemmas.

LEMMA 2.2. Under assumptions (2.1), (2.2), (2.3), for every x€X and
BE]O, 1[ the function t > W(t, s)x belongs to Zy4(s, T; D) and t = W,(t, s)x
belongs to Z, 4(s, T; X). There is C,($)> 0 such that

217 N W)X lzpsrmy t | WS )X lzpsmnze (B | X -

The proof is quite analogous to that of Proposition 2.2 of [14], the difference
being that now A is Lipschitz continuous instead of only Hélder continuous. W

CoROLLARY 2.3. Under assumptions (2.1), (2.2), (2.3), for every B E[0, 1],
6 €10, 1[, and fE€Z (s, T; X), the function u given by formula (1.2) (with
uy = 0) is the solution of problem (1.1) (with uy = 0), it belongs to Zs ,(s, T; D),
and u’ belongs to Z; (s, T; X). Moreover, there is Ci(f, a) > 0 such that

(2.18) || u "Z,.,(s,T;D) + | u| Zyds, T:X) = CB, )| f ||z,,,(s,T~,X)-
The proof is the same as that of corollary 2.3(i) of [14]. ]

LEMMA 2.4. Under assumptions (2.1), (2.2), (2.3), there is Cy> 0 such that
Jorevery x€EXand0=s<t=T, —s=<h=T —t we have

| W(t+h,s+hx—Wt,s)x|p+ | Wit +h,s+h)x —W(t,s)x|
@19 < e hpe — sy x ).
Proor. The function
v()=W(+h,s+h)x—W(t,s)x, s=t=T
(T'=T—hifh =0, =Tif h < 0) satisfies
(220) V() =A@+ o)+ wu(t), s<t=T; v(s)=0
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where
G =[A(t+h)—AOIW( +h,s+h)x, s<t=T,
wi(t) = [A(t) — A(s)]e! ~MOx — [A(t + h)— A(s + h)let—sMe+hy s <t <T.

Both ¢, and y, are bounded in [s,I'] and Holder continuous in [s +¢,T7]:
actually, for every B €10, 1[ we have, by (2.17) and (2.8), (2.12):

16O 1 + w0 |
< (147 1ol R1CAB) + [ANer | M, + LA LN LR} ) |
and, fors<s+e=<r<t=T:
| 8400 — 60 |
< (e R 1 = PCUBY + 14 ol B 1 = )P =) BCB} I % |,
) — ) |
(2041 M+ 147 1N T x )

2[AYe=(r =)™ "My + | A" | NI x5

A

2(||A’||°o(t —r)r—s5)" "M+ || A" || o(r — )M, fr'_

o) x|

S2| A M+ MYt =r)r =) | x|

k

so that, for every g, 6 €]0, 1] with ¢ + 6 = 1, we have
| wa(®) = wn(r) || Sc(a, O)t —r)7 |h|F+od—0-Dgo— (=26 || x || |

Choosing now 0 =(1 —a)/2 and 0 =o/2, we find that y, belongs to
Zy (s, T; X), with = (@ — a?)/2, and its Z; ~norm is bounded by const - |/ |°.
Applying Corollary 2.3 to problem (2.20) we get the statement. |

PROOF OF PROPOSITION 2.1. In order to consider i.v. problems starting at
t =0, it is convenient to introduce the function

2.21) Vit,s)x=W(i+s,s5)x, 0=s=<T, 0=t=T-5s5, xEX.

Once we have shown that V is differentiable w.r.t. both arguments for
0<t<T—s, we will get
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QR W(t,s)x==V,t—s,5)x+V(t—s,5)x, s<t<T, x€X

and estimates (2.15), (2.16) will follow easily from the corresponding ones
concerning ¥, and V.
The function w(t) = W(t + s, s)x is the solution of
wi(t) =A(t + s)w(t) — [A(t + 5) — A(s)]e")x,
(2.23) 0<t=T—s; w(0)=0

and belongs to Z, 4(0, T — s; D), for every €10, 1[. Differentiating formally
problem (2.23) w.r.t. s, we get an initial value problem for the unknown
z(t) = Vi(¢, s)x:

Z(t)=A(t +5)z(t) + A'(t + S)W(t +5,5)x — [A'(t +5) — A'(s)]e"O)x
@) 4@ +5)— ABRsEOx), 0<t=T—s; z(0)=0.

We will show the following:
(a) Problem (2.24) has a unique solution W€ Z,_,,(0, T —s; D), with

(225) 129 2015y + 11(d1ADZ9 | 7, or-sn S Call x| -

(b) limh_.othI_s,T._s] h _l[V(t, s+ h)x e V(t, S)X] = Z(S)(t) forO0<t =T —s.
(c) For every 6 €]0, 1] there is Cs(¢) > 0 such that

(2.26) I 29— 2 | =Clo)is—ri@ x|, x€X
and for every § €]0, 1[ there is C4(8) > 0 such that
(2.27) | 29) =20 | S C@|s—r* | x lss XEX,.
PrROOF OF (a). We have only to show that the functions
H)=A(t +s)W(t +s, s)x, 0=t=T-y,
w()=[A(t +s)—A'(s)]e“®)x, O0=t=T-s,
(O =[A@ +5)— A(5))0/3s(e“¥x), O0=t=T-—s

belongto Z,_,,.(0, T — s; X), and then to apply Corollary 2.3, since the family
of operators B(t) = A(t +s), 0 =t = T — s, satisfies assumptions (2.1), (2.2),
(2.3). We have:
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e (eI + lv@d + 1x@ 1)
< 072 A7 L Cie) + [t My + [ A7 [N [ x|
< (T 47 |(Ci(@) + N) + [A)e- M} | x |
and, for0<e=<r<t=T -3
eflgt)—o(r) || =eldle-t —r)*C@) | x | +e' [ 4" || (¢ = r)Cila) || x |
S(TAle-+ T A7 | Cla)e =) x ||,
eflw@) -y || =e(| A +5)—A(r +3) |leon | €49x I
+ | A +5) = A'6) Lo | €49x — e ||
S M+ M)A’ c-(t =) || x ||,
el x()—x(N) || =e(| 4@ +5) = A +5) [|Lo.x || 8/05(e“Px) || p
+ | A(r +5) = A(S) lLw.x || 0/9s(€“Ox — e™9x) || p)
SN M)A =)l x|

Therefore ¢ + y + x belongs to Z,_,,(0, T — s5; X), and statement (a) holds
thanks to Corollary 2.3.

PROOFOF(b). ForO0=s<T,0=¢=T-5((s,1t)# (0, T))and x € X, set
() =h"'\(V(t,s + h)x — V(t, 5)x)
=h"'\Wt+s+h,s+hx—Wit+s,5)x), 0=t=t,

Ifs=0and t,# T, z, is defined for 0 <h = T — ¢, if s >0, z, is defined for
h#0, —s=h=T-—1t,—s. We want to show that, for each ¢, z,—z as
h — 0, where z is the solution of (2.24). The function t = z,(¢t) — z(¢), 0=t =
to, satisfies:

zi(1) = 2’ () = A(t + )z, (t) — z() + fu(t), 0<t=ty; (2, —2z)0)=0
where

Ju(0) = A + 5)(z4(2) — 2(1))
+{h MA@ +h+s)— At +5)]—A(t+s)}W(t +s,5)x
+h A +h+s)—AQ@+ )W +h+5,h+5)x — W(t+s, 5)x]
—{(h MA@+ h +5)—A(@t +5)—Ah + 5)+ A(5)]
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—[A(t +5) — A'(s)]}e9x
+ h_llA([ +h+ S) —A(t + S) —A(h +5) +A(s)](etA(h+s)x _ em(s)x)

— [A(t +5) — AS)}[h (" +9x — e“V)x) — 3/ds(e“Ox)],
0=<t=t,

The linear operators B(t) = A(t +s), 0 =t = t,, satisfy assumptions (2.1),
(2.2), (2.3), and f, belongs to Z,_, (0, t; X) for each A, so that z, — z may be
represented by

2, () —z(t) = fol U(t, 0) f,(0)da, 0=t=4

where U(t, g) is the evolution operator generated by the family {B(f)}. We
want to prove that z,(t) — z(t) as h — 0 for every t €[0, t]. Since U(t, g) is
bounded in L(X), we have only to show that f, =0 in L'(0, t,; X).

We have:

H{R A +h +5)— At +5)]— A + )W +5,5)x ||
SR PC@ | x )| (by (2.17))
Nh~ A+ +5) =A@+ IWE +h+s,h+5)x — W(t +5,5)x] |
= |4 Gt R | x ]| (by (2.19));
(A~ AQ +h +5)— A(t +5)— A(h + 5) + A(5)]
—[A(t +5) — A"(s)]}e“Cx ||

< “ J:[A’(t + 54 ah)— ANt + 5)— A%s + oh) + A'(s)|do

Mt~ 'x||
LX)

S20A V=M R 12 | x|

| A=A + h +5)— At +5)— A(h + 5) + A(s)](e“ 9x — e40)x) ||
SN A x| (by (2.12))

| {A(t + 5) — A($)][h (4% +9x — e“0x) — 8/ds(e*x)] ||
S A Nslhl x|l (by (2.14)).

Therefore, f, — 0 in LY(0, t,; X) as & — 0, and statement (b) is proved.

PrOOF OF (c). Let 0 =r <s =T. The function



Vol. 68, 1989 PARABOLIC EVOLUTION OPERATOR 171

w(t)=zt)—2z"(), O0=t=T-r
is the solution of

wi(t)=A@t +rw@)+ f(t), 0<t=T—-r, w(0)=0
where

Sy =[A(@t +5) — At + ]z (2)
+[A@+S)W(E +s,8)x —A(t+r)W(t +r,r)x]
— {[47(t +5) — A(5))e"x — [4(t + r) — A"(r)]e“"x)}
— {[4(t +5) — A(5)10/0s(e"“x) — [A(1 + r) — A(r)]3/dr(e“"x)},
0=t=T-r.
Arguing as in in point (b), we find

sup  [|w(®) || =const: || fllLor-rx):

0=t=T-r
Forevery 6 €10, 1[ and t €]0, T — r[ we have, by (2.25), (2.17), (2.12), (2.14):
1| = {14’ |oCat*™ (s — 1)+ [A")c+(s — 1)*Cia)
+ | A’ |C3t (s — )"
+ 2[A" e My(s — r)*ort =" 4 (A ] Ny "~ (s — )
Al Nis =)+ | A" [ Ns(s = r)} | x | .
If x belongs to Xj, then
N4 +5) = A7) — [ + )~ A7()]e“Ox |
S[A)eMigls =)y | x lo + [N s =) | x ||,
the other estimates remaining unchanged. Point (c) is so proved.

We are now ready to show estimates (2.15) and (2.16). Points (a) and (b)
imply that there exists d/ds(V(t,s)x)=z%¢t) for 0Ss<T, 0=t <T -5
((s, ) # (0, 7)), and (2.22) holds. (2.15)(1) follows now from (2.17) and (2.25),
recalling that z’€ Z, _, (0, T — 5; X) implies that z is bounded with values in
X. In fact, it is Holder continuous, since we have

lz(6)—z(r) || = f ' 20)do

Sa W (t—r) sup |e'z/(a)|.

0<oxT-s
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Let us show (2.15)(ii). By (2.19) and (2.17) we have, for0 < 5, <s, <t = Tand
O<o<l:

| Vit = 51, 0x = Vit = S0, 59)x ||
= | Wi(t,s)x — W,(t — 5, + So, S)x ||
+ [ Wilt = 51+ 50, So)x — Wilt, so)x ||
SCt—s) " si— s L x | + Cla)t —s) (s — s | x || -
(2.15)(ii) follows now from (2.25) and (2.26), whereas (2.15)(iii) follows from
(2.25) and (2.27). [ ]
2.3. The function G(t, 5)

Throughout the subsection, assumptions (2.1), (2.2), (2.3) are assumed to
hold.

ProroSITION 2.5. For every x€ X, G(t, s)x is differentiable w.r.t. s for
t >s, and we have

(2.28) (1) G,(t, s)x = — A(s)e" ~MOx + 3/0s(™¥)x) g =y -5 + Wi(2, $)x,
0=ss<t<T,x€X,
1) G,(t,s)x =G, r)G,(r,s)x,0=s<r<t<T,x€EX.

Moreover, G(t, s)x belongs to D for t > s and it is differentiable w.r.t. t for
t>s, with

(2.29) G, (t,s)x =A@)G,(t,s)x, 0=s<r<i<T, x€X.
If x €D, we have also
(2.30) G,(t,s)=—G(t,5)A(s)x, 0=s<t<T.

If x €D and A(s)x belongs to the closure of D in X, then G(t, s)x is differenti-
ablew.r.t.suptot=s, and (2.30) holds also for t =s.
There are y,, 75, 7,(8), yA8) > 0 such that

@) 16 )x || =nt—5)7' x|, xEX,
(231) (i) | Gut, s)x || =00t —5)°~" || x |lg, X EX,
(i) || Gi(t,)x || =n x|l p, xED;
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(l) " G:t(tss)x " é)’z(t—S)_zllx“’XEX,
(232) (ll) " Gsl(t, S)X " = yZ(o)(t - S)0~2 " X "0’ XEXo,
(iii) I G,(t, s)x || é)’z(t—S)_l"x"D,xED_

For every 6 €10, 1] there is yi(a) > 0 such that
| G:(t, s)x — Gi(t, so)x || = yx(0)si —5)*(t —s) ™'~ || x ||
(2.33) 0s,<s,<t=<T, xEX,
For every 6 €10, 1[ there is y,4 > 0 such that
| Gi(¢, so)x — G(t, s)x ||

(234) = m( f T 602 + (t —5)) " a,1 — a}) (51— 50 | x llo,

t—s

O=sp<s;<t=T, x€EX,.
Finally, there is ys> 0 such that
| Gs(, 1)x — Gi(2, So)x || = vs(si — $0)*(t — )™ | x |,
(2.35) O=so<s,<t=T, x€D.

Proor. (2.28)(i) is a simple consequence of (2.4), and (2.28)(ii) follows
from the equality G(¢,5)=G(,r)G(r,s), s<r<t. (2.28)(ii) implies
obviously that G(t, s)x is differentiable w.r.t. ¢ for ¢ > s, and (2.29) holds.
Concerning (2.30), it is easy to show (see [14, prop. 3.6(iv)]) that for every
x €D with A(s)x €D, s — G(t, s)x is differentiable in [0, ¢], and (2.30) holds
for s =t = T. In the general case, set

v(t) = G,(t, s)x + G(t, $)A(s)x, s=t=T.
Then v is differentiable for # > s, with v’(z) = A(¢)v(t) by (2.29). Moreover
v(t) =[G(t, s) — "~ MONA(s)x + 8/3s(e™)x),y—,—, + Wi(2, $)x
= W(t, s)A(s)x + 3/3s(e™O)x) g, s + W, (2, 5)x

by (2.4) and (2.28)(i), so that v is continuous in [s, 7], and (since x belongs to
D) v(s) = 0. Therefore, v is the classical solution of

vV)=A@w(@), s<t=T, v(s)=0.

By uniqueness, v(t) = 0 for every ¢t €E[s, T}, and (2.30) holds.
Estimates (2.8), (2.9), (2.12), (2.15)(i) imply (2.31)(i), whereas (2.31)(iii) is
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an obvious consequence of (2.30) and of the boundedness of || G(¢, 5) || Lx)-
(2.31)(ii) follows now from (2.31)(i) and (2.31)(ii) by interpolation.

From equalities (2.28)(ii) and (2.29) we get G, (t, s)x = A()G(t, r)G,(r, s)x,
0=s <r<t<T. Using estimates (2.31) and estimates (2.11) of [14], and
taking then r = (¢ + 5)/2, we get estimates (2.32).

(2.33) is a consequence of (2.8), (2.12), and (2.15)(ii), whereas (2.34) follows
from (2.9), (2.12), (2.14), and (2.16). Let us show finally (2.35): for each x €D
we have, by (2.31)(1),

| Gi(t, s)x — Gi(¢, so)x |
= | (G, 51) — G2, s0))A(s)x || + || G(2, s0)[A(s)) — A(so)]x ||

N A P R Iy P P RCES By

and (2.35) follows easily. |

With the aid of estimates (2.31) we can show an integration by parts
formula, which will be used in the next section.

COROLLARY 2.6. LetO0<a<b=T,andlet fEC'(a,b]; X). Then

[ 691055 = - [ snn - nenas

(2.36) —G(t,a)fla)— f1)), a=t=b.

If, in addition, f is bounded in [a, b] with values in X, for some 6 €0, 1[, then
we have also

fa 6,576 = — [ 66,9 fids + i) - G, a)fl@),

2:37) ast=bh

Proor. For a<t<b and for each ¢€]0,¢ —a[, the function
s—=G(t, s)fs)— f(1)] is continuously differentiable in [a, ¢ —¢], and we
have:

010s{G(t, ) fis) — AN} = Gi(t, ) fs) — SO + G (1, ) f(s).

Integrating between a and ¢ — ¢ we find
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[T ew 9 - - f TG, 9 As) - fi)lds

(2.38) + G, t—e)flt —e)— f)) — G(t, a)[fla) - f(H].

Letting £ —0 in (2.38) and recalling estimate (2.31)(i), we find (2.36). If, in
addition, fis bounded with values in X,, we can repeat the above procedure
with the function 8/3s[G (¢, 5) f(s)] replacing 9/0s{G(t, s)[ f(s) — f(¢)]}. Since
X, is contained in the closure of D, G(t, t — ¢€) f{(¢t) goes to f(t) as ¢ — 0 due to
Proposition 3.6(ii) of [14], and (2.37) follows easily from estimate (2.31)(ii). B

In view of Corollary 2.6, we are interested in the regularity properties of the
function

(2.39) u(t) = f Gt s)f5)ds, a=t<b.

Using estimates (2.31) and (2.32), many regularity properties of # could be
stated; for the sake of brevity we only give a result which will be used in the
next section.

PRrOPOSITION 2.7. Let fbelong to C*([a, b]; X,) with0 + B > 1, and f(a) =
0. Then the function u defined in (2.39) belongs to C#*%([a, b]; X), u — f
belongs to C#*°-([a, b); D), and

(2.40) wt)y=A@u(t)— ft)], a=t=bh.
Moreover, there is CA0, f)> 0 such that

(2.41) N u e mgaopn + 14 = fllco+s-1apypy = CO, B || f Nl cPaprxe

Proor. First of all, we show that u(¢) — f{(¢) belongs to D for every ¢, and
t—=A)[u(t) — f(t)] is (8 + B — 1)-Holder continuous. By Corollary 2.6 we
have

(2.42) u(t)—f(l)=Lth(t,S)[f(S)—f(t)]dS—G(t,a)f(t), astsbh.

By estimate (2.32)(ii) and assumption (2.3), we get
| G2, $)[As) — )] | p = const-(¢ —5)°*#~2,

so that u(t) — f(¢) belongs to D for every ¢ €[a, b]. Moreover, using equality
(2.4), we get
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A)G(t, —r)x — A(t)G (L, 1)x
= Wr(th r)x - I’Vt(to, r)x +A(r)[e(’1_')'“’)x _ e(to-r)A(r)x]

forO0=r<t,<t, =T, so that, by (2.17) and (2.8), there is k,(6, 8)> 0 such
that

I A@)G(ty, )x — AU)Gto, 1)x |

(2.43) <k(6, B) [(tl — 1) E Yty — )08 + fll_ra_zdo'] (B

forO=r<t<t;,=Tand xE€X, and
| A@)G(ty, r)x — A(t)G (L, r)x ||
k0.0 -0 == + [ 0020 x

to—r

(2.44)

for 0 =r <ty<t, = T and x € X,. By equality (2.28), we have
A()G(t — s)x — A(t)Gs(to, $)x
=[4(®)G (¢, r) — A(t)G (L, )IG(r, $)x

forO0=s<r<ty<t, =T.Takingr = (f, + 5)/2 and using (2.43), (2.31)(ii) we
get

| A(2)G(t1, s)x — A(t)G, (1o, $)x ||
= k8, BIn(O[(t — )Pty — ) 7#
+ (=)t =872t —to—35) "1 x || 6,

0=ss<{p<t(, =T, xEX,.

(2.45)

Using now estimates (2.32)(ii) and (2.44), (2.45), together with estimate (2.11)
of [14], we find

| A@D[u(t) — f8)] — A(t)[ulte) — ] |l
L * )Gt 5) — At9)G(toy ILAS) — fte)lds

S )

+ H [ 4@, 9A6) ~ feones

+ " A(tl)G(tl’ to)[f(to) - f(tl)] "

+ | [A(t)G (8, @) — A(1)G (1, @) fto) ||
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= {kl(e, BIN®) [ 1= 1977+ (0= o= )22t = to= ) s
+700) [ (0= 5907 ds + clO)t — 1974
k06— 0=+ [ 5725 | Fenann
< {k,(e,ﬂ)y,(e) [b —a+ fO” a0 +9-32 4 a)"da] +7(0)8 + B — 1)
T e(6) +Kf6, B — )1~ + (0 + 5 — 1) '1} (b= 10" Neretr

Let us show now that u is differentiable and (2.40) holds. We have, for
ast<t+h=b:

u(t+h)—u)

) — A(®)[u() — f)] “

—A(1)G,(t, S)] [f(s) — flD)ds

fl[GS(t + h) S) _ Gs(t’ S)
a h

1 t+h h h d
4 “; [ G0+, ft5) — e+ s

‘|

J;‘ Gs(t +ha S)_ Gs(tas)f(t)ds

h

+ J"“' G, (¢ : h,s)

4

ft + h)ds + A()G(t, a) f(t) ”

f ' fo [A(t + oh)G.(t + oh, s)— AG,(t, s))do [ f(s) — f(t)lds

S ’

f “ [T R 1) g+ nas

+ | A7G( + R, 1) — 1) A1) — fit + h)] |
+ | {(h7'[G(t + h,a)— G(t,a)l — A()G(t, a)} f(2) |
= I,(h) + I(h) + LI(h) + L(h).

Thanks to (2.45) we have
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sh
(t—5)"PRh+1t—5)

I (h) = ky0, B) fl [S“ﬂ_'ha”_' + ]ds[f]C’([a,b];Xa)

= k)0, p)n°HE-! [b —a+ fﬂo P2 + a)"‘da] [fIcAga brter
0

Using (2.32)(i1) we get

t+h
L(h) < 7,(6)h~" f (t +h = )PP ds flengannn

¢

= p0X0 + B) RPN flema prixe-

Thanks to Proposition 2.6(iv) of [14] we have |G, s)x—x]| =
c(8)(t —5)? || x ||o for t > s and x € X, so that

I(h) = c(Oh® P~ flenanrng

Finally, for ¢t = a we have I,(h) =0 for every h, whereas for t > a we have
obviously lim,_, I,(h) =0.

Therefore, A(t)[u(t) — f(¢)] is the right derivative of u(¢) for each ¢t €[a, b|[.
Since both u and A(-)[u(-) — f(-)] are continuous in [a, b[, then u is differen-
tiable in {a, [ and (2.40) hold for a =< ¢t < b. Since «’ is uniformly continuous
in [a, b[, then u is differentiable also at 1 = b, and (2.40) holds. |

REMARK 2.8. Assumption f(a) =0 in Proposition 2.7 was made in order
to prove regularity of # up to ¢ = a. One can easily see that, if f{a) # 0, then «
belongs to C#*%([a + ¢, b]; X), u + fbelongs to C#*°~Y([a + ¢, b]; D), and
(2.40) holds in [a + &, b] for every e €10, b — al. [ |

The following proposition is concerned with further regularity of G(¢, s)
w.r.t. ¢, which is much easier to be treated than further regularity w.r.t. s.

PROPOSITION 2.9. The function t — G(t, s)x is twice continuously differen-
tiable in s, T for every x € X, and there are constants y,, 3, 7(8), y(8) such
that we have:

@) Gt s)x || Syt =) x|, 0=s<t=T,x€X,
(2.46) (i) | Gult, s)x || S 700t = 5)° 2| x [lgs 0S5 <t =T, xEX,,
(iii) || Gu(t,s)x || Syt —5) "' || x lp, 0=5s <t =T, x€ED;



Vol. 68, 1989 PARABOLIC EVOLUTION OPERATOR 179

(@) | Gults, $)x — Gulto, S)x || S vty — t)(to—5) >[I x ||,
O=s<ty<t, =T,x€EX,
(247) (i) || GAt, s)x — Gty S)x || = 7AOKt — 8%t —5) 27 P L x || {1 x |lo,
0Ss<ty<t,<T,xEX,
(iii) || G.(t), $)x — Gulte, $)x || S vty — t)*(to— ) "' || x || b,
0ss<to<t,=T,x€ED.

ProOOF. Let 0 =<s< T and ¢€]0, T — s[. Consider the problem obtained
differentiating formally (1.1) w.r.t. time in [s + &, T] with f = 0):

vi(t)=A@)u(t) + A(1)G(t, s)x,

(2.48)

sHe<t=T;, vis+e)=A+¢e)G(s +¢,s5)x.

It is easy to check that ¢ —A’(t)G(t, s)x belongs to C*([s +¢, T]; X) and

v(s + ¢) belongs to the closure of D. Therefore (2.48) has a unique solution v,
and, by estimates (3.6)(a) and (2.10) of [14], we have:

ol + o) [lp = const-(| A’(-)G (-, )X || cots + .10

(2.49) +(t—s—e) ' JA(s+e)G(s + ¢, 8)x ||),
st+e<t=T.
Therefore
lv'(t)|| Sconst-(t —s—¢) ‘et x| ifx€X,

l vt} || Sconst-(t—s—e) e x|ls IIfxEX,,
| v(#)|| Sconst-(t—s—¢) '|x||, ifx€ED.
Thanks to estimates (3.6)(a) and (2.12) of [14], we have also
o @ —v ()| + [[v@)—v(r) Ip
=const-[(r —s —&) " | A'CIG(-, )X | ooy
(2.50) +(t—s—e) | A(s +&)G(s + & 8)x || J(t — r)",

ste<r<t=T.

Now, it is not difficult to prove that to prove that v(t)=G,(t,s)x =
A@t)G(t, s)x, we have to write down the i.v. problem satisfied by v,(¢t) =
h='[G(t + h,s)x — G(t, 5)x] in [s + ¢, T]; this lets one check that v, —v
uniformly in [s + ¢, T]. Estimates (2.46) and (2.47) follow now easily. [ ]
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3. A representation formula in nonhomogeneous L.B.V. problems
We consider here problem (1.3), under the ellipticity condition
(31) aij(t9 x)éiéj ; 4 lélza 0 é t é T: XEQ, é = (él’ seey én)ERn;

Q is a bounded open set in R”, with C? boundary dQ. The coefficients of the
operator

satisfy the following regularity assumptions:

(3.3) foreveryi,j=1,...,n,a;b;, care C'** with respect to time, q; is C*
w.r.t. x, b;is C' w.r.t. x, ¢ is continuous w.r.t. x, and we have:

sup || ai(+, x) [ c+qorp + SUP | 6+, X) ll+eqorp + sup || (-, X) |+ go.rp < + 0,
x€Q xefd XEN

sup |l a;(t,°) lcxay+ sup || bt <) ey + sup |l c(t,) e < + .
T 0=t=sT - -

0st= 0=st=

3.1. The Dirichlet boundary condition
Under assumptions (3.1), (3.2), (3.3), we consider problem

u(t, x)=(Fu@)(x),0=t=T,xEQ,
(3.4) u(0, x) = uyx), x€Q,
u(t,x)=g(t,x),0=t =T, x€N.

We fix p€]1, + [, and we choose

3.5) X=L*(Q), D=W»Q)n W}x(Q).
Then the family of operators

(3.6) A(t):D—X, AW)f=1)f, 0=t=T

satisfies assumptions (2.1), (2.2), (2.3), thanks to [4], [3]. Therefore there exists
the evolution operator G{(¢, s) associated to the family {A4(7)}, and s — G(t, 5)
is differentiable for ¢ > s with values in L(X, D). We assume, for simplicity,

3.7 0€p(A(1)) foreach t €[0, T

and we define the Dirichlet mapping D(s): W2~ V7-7(6Q)— W>?(Q) by
D(s)y = v, where v is the solution of (see [4])
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(3.8) HAsh=0 inQ, Vg = V.

Then D(s) belongs also to L(L?(32), W'r~%7(Q)) for every ¢ > 0. This was
shown in [12, th. 10.1] in the case where dS2 and the coefficients of </(s) are of
class C*. But one can see, repeating the proof of Th. 10.1 of [12], that 4Q of
class C? and assumptions (3.3) are sufficient. Now, recalling again assumption
(3.3), it is easy to see that

s = D(s)ECY([0, TT, L(L*(9Q), W' ~*2(Q))

(3:9) A C((0, T, L(W2~"72(3Q), W»(Q)).

PrOPOSITION 3.1. Under the previous assumptions and notation, for
every u,€ W>2(Q), g:[0, T1 X 3Q—R s.t. t —~g(t,-)ECY(0, T], L?(3Q)) N
C({[0, T1, W*~Vr-2(8Q)) and uy s = 8(0, ), problem (3.4) has a unique solution
u, such that t — u(t,-) belongs to C'([0, T], L*(Q)) N C({0, T}, W**(Q)), and u
is given by formula (1.4). We have also

u(t,") = G(t, 0t — D(0)(0,-))
(3.10) - fo "G, s)[dIds(D(s)g(s, Nlds + D(t)g(t, ),

O0=t=T.

Proor. Uniqueness of the solution to (3.4) follows obviously from unique-
ness in the homogenous problem. Let us show that the function u defined in
(3.10) is the solution of (3.4). Since g(0,-) belongs to W?2~V7.7(3Q), and
D(0)g(0,-) belongs to W2?(Q) and, due to the compatibility condition
Ujon = 8(0, -), we have u, — D(0)g(0,-)ED . Moreover, for every 0 €]0,1/2 p[
the interpolation space X, coincides algebraically and topologically with the
Besov space B2-?(Q) thanks to [8]. Since W"?~%?(Q) is continuously embed-
ded in BY?~¢(Q) for each ¢ €10, 1/p[ (see, e.g., [18, th. 4.6.1 p. 327]), then, due
to (3.9), t —d/dt (D(¢t)g(t,-)) belongs to C([0, T'], X;) for each 6€]0, 1/2p[.
Therefore, by Proposition 2.6(v) and Proposition 3.5(ii) of [14], the function

v(t) =ult,-)— D(t)g(t, +), O0=t=T
belongs to C!([0, T'], X) N C([0, T), D) and satisfies
v'(t)=A(t)(t) —d/dt(D(t)g(t,-)), 0=t=T; v(0)=u,—D(0)g(0, ).

Using again (3.9), we find that 1 — D(¢)g(t,-) belongs to C([0, T}, W*?(Q)).
Summing up, we get t —u(t,-)ECY[0, T], L?(Q)) N C([0, T], W*?(Q)), and
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u satisfies (3.4). The representation formula (1.4) for u is obtained integrating
by parts in (3.10); this can be done thanks to Corollary 2.6. |
3.2. The mixed boundary condition
Under assumptions (3.1), (3.2), (3.3), we consider now problem
u(t,x)=(LOut))x), O0=t=T, x€Q,
(3.11) u0,x)=uyx), x€Q,
Bu(t,x)=g(t,x), 0=t=T, x€0Q,

where

(3.12) Bf(x)=B:(x)D,flx) +y(x) fix), x€EQ
and

(3.13) Bi, yEC'AQ); B(x)vi(x)# 0 forx€EIQ.

We repeat the procedure of the previous subsection, setting
(.14 X=L*Q), D={fEW*Q),BD.f+ =00ndQ).

Again, the family of operators A(¢) defined by (3.6) satisfies assumptions (2.1),
(2.2), (2.3) thanks to [4], [3]. We assume that (3.7) holds, and we define the
mixed mapping M(s): WhVe»(3Q) — W2?(Q) by M(s)y = v, where v is the
unique solution of the elliptic problem

(3.15) As)w=0 inQ, BDv+yrv=y ondQ.

Then M(s) belongs also to L(L?P(3Q), W'tVr-«r(Q)) for every
€€]0, 1+ 1/p[, thanks to [13, th. 4.1]. In fact, in [13] it is assumed that 6Q and
the coefficients of o/(s) and 4 are of class C, but one can check that the
statement of Theorem 4.1 in [13] holds true also under our hypotheses. Now,
using assumption (3.3), it is not difficult to see that

s =~ M(s)EC\([0, T]; L(L*(8Q), W'*"?=42(Q))
(10 N O, T LW =723, WA ()

ProPOSITION 3.2. Let assumptions (3.1), (3.3), (3.13), (3.7) hold. Then for
every u,€ W2(Q), g: [0, T1 X 8Q— R such that

t— g(t’ ) )e Cl/z([o’ T]a Lp(ag» N C([O’ T]’ wi- llp,p(aQ)) and Quo == g(Oa ‘ )a
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the function u given by formula (1.6) belongs to C'([0, T], L*(Q)) N
C([0, T), W*?(w)) and it is the unique solution of problem (3.11).

ProoF. One can get heuristically formula (1.6) arguing as in the proof of
Proposition 3.1; but in this case a formula similar to (3.10) does not make
sense, since M(s)g(s,-) is not differentiable. However, (1.6) makes
sense, because —M(t)g(t,-) belongs to CYX([0,T], X,) for every
6 €10, 1/2 + 1/2p[: actually, it belongs to C'*([0, T], W'*"?~¢7(Q)) thanks to
(3.16), and W'*r-¢r(Q) is continuously embedded in the Besov space
BLtVr=ep(Q) (see, e.g., [18, th. 4.6.1 p. 327]), which coincides algebraically
and topologically with X, for § = 1/2+ 1/2p — ¢/2 due to [8). Therefore
formula (1.6) makes sense, thanks to estimate (2.32)(ii). To show the state-
ment, set u(t,-) = u,(t) + uy(t), where

u(t) = G(t, 0)(uo — M(0)g(0,-)) + M(0)g(0,-), 0=:=T,

ut) = J;l G, s)(M(s)g(s,-) — M(0)g(0,-)yds, 0=r=T.

Since g(0, - ) belongs to W'~ 17-2(3Q), then M(0)g(0, -) belongs to W*?(Q) and,
due to the compatibility condition Bu, = g(0, -), we have u, — M(0)g(0, )€
D; therefore t— G(t, 0)(u, — M(0)g(0,-)) belongs to C[0,T), X)n
C([0, T, D), so that u, belongs to C'([0, T'], L*()) N C([0, T'], W*?(Q)) and
satisfies

ui(t) = A@t)G(t, 0)(uo — M(0)g(0,-))
= oA (u,(t) — L (OM(0)g(0,.), 0=¢=T,
1(0) = u,
'@ul(t)=g(03')a OétéT
We remarked before that ¢ — M(t)g(t, -) belongs to CVX[0, T, X,) for every
0€10,1/2+ 1/2p[; choosing §E€]1/2, 1/2 + 1/2p[ and applying Proposition
2.7, we find that u, belongs to C'([0, T'], L?()), t —~uy(t) — M(t)g(t,-) +

M(0)g(0,-) belongs to C([0, T], D) (so that, due to (3.16), u, belongs to
C([0, T1, W>*(Q))), and
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uj(t) = A()ut) — M(t)g(t,-) + M(0)g(0,-)]
= ol (Du(t) + /(1)M(0)g(0,-), 0=t =T,

u(0) =0,

Buy(t) = — B[ — M(1)g(t,-) + M(0)g(0,-)] =g(t,-) —g(0,-), 0=¢t=T.
Summing up, we find that « belongs to C'([0, T'], L*(Q)) N C([0, T], W>?(Q))
and satisfies (3.11). Finally, uniqueness of the solution to (3.11) is an obvious
consequence of uniqueness in the homogeneous case. n
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